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Abstract
In the Higgs triplet model, it is a priori possible to have charge breaking minima developing. We analyse
the possibility of such minima to be deeper than neutral ones. Analytical expressions relating the depth
of minima of different types are obtained. A global symmetry of the model leads to increased stability for
charge-preserving vacua. However, when a soft-breaking term is present, deeper charge-breaking minima
may occur more easily. We realise that vacuum configurations with a vevless doublet can be possible, with
such vev configurations changing the stability picture. We scan the model’s parameter space and realise
what vev configurations are most likely to produce charge breaking minima. We also obtain a necessary
and sufficient condition for stability against charge-breaking vacua for the model with an intact global
symmetry.2
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1. INTRODUCTION
One of the fundamental pieces of the Standard Model (SM) of particle physics is the Higgs mechanism, through which elementary
particles acquire mass from the spontaneous breaking of gauge symmetries, when a scalar doublet develops a non-vanishing
vacuum expectation value (vev). This mechanism implies the existence of an elementary spin-0 particle, the Higgs boson, which
was finally discovered in 2012 by the LHC collaborations [2, 3]. Further measurements of the properties of this particle (see, for
instance, [4, 5]) show that it behaves in a very similar manner to the SM Higgs particle. However, there are still a lot of room for
theories with extended scalar sectors being able to accommodate such particle. One of the most popular and simplest extensions
of the SM scalar sector is the two-Higgs doublet model (2HDM), proposed by Lee in 1973 [6]. For a 2HDM review, see [7].

The Higgs-triplet model (HTM) [8, 9, 10, 11, 12, 13] stands as another popular theory with an extended scalar sector – a scalar
triplet, with hypercharge Y = 2, is added to the usual SM Higgs doublet. It has a richer scalar spectrum, which includes two
CP-even scalars, h and H, a pseudoscalar A, a charged scalar H± and a doubly charged one, H±±. One of the main motivations of
the HTM is the possibility of explaining the smallness of neutrino masses via a type-II seesaw mechanism. The Higgs-triplet model
can also accommodate dark matter candidates, and boast a rich phenomenology.

There is an extensive body of work on the HTM (see for instance [14, 15, 16, 17, 18, 19]), both on theoretical and phenomeno-
logical aspects. In this work we perform an in-depth analysis of the vacuum structure of the model, using techniques developed
to study the 2HDM. In particular, we are interested in the possibility of charge-breaking (CB) vacua developing– since solutions
of the minimization conditions of the potential which include vevs possessing electrical charge, which spontaneously breaks the
electromagnetic symmetry, are a priori possible. With this analysis we wish to provide a tool which allows to limit the model’s
allowed parameter space, increasing its predictive power. Several authors [14, 15, 19] have performed numerous and distinctive
analysis on the HTM vacua. However, with this work, we go further and perform the most exact and generic analysis of the HTM
vacuum so far in the literature.

This manuscript is organized as follows: we briefly describe the model in section 2, with emphasis on the scalar sector and pos-
sible vacua. In section 3 we discuss the vacuum structure of the potential without the soft-breaking term. Then, in section 4 we will
allow for the presence of a global symmetry soft breaking term, and show how it changes the stability of neutral vacua with respect
to charge breaking. In section 5 we will study the situation where the doublet has no vev and the triplet possesses charge breaking
vevs, and show how this changes the stability status we have come up with. We will end with a brief yet insightful numerical study
of the model, in section 6, searching for regions where deeper CB vacua might occur, and draw some final conclusions in section 7.

1Speaker
2This contribution is based on the work of [1].
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2. THE HIGGS-TRIPLET MODEL
The Higgs-triplet model (HTM) is an extension of the scalar sector of the Standard Model (SM), which is complemented by a
hypercharge 2 triplet, ∆, besides the usual hypercharge 1 Higgs doublet of the SM, Φ. Such fields can be written as

Φ =

(
φ+

φ0

)
, ∆ =

(
∆+/
√

2 ∆++

∆0 −∆+/
√

2

)
(2.1)

in which all φx, ∆y are complex fields, and we use an SU(2) matrix representation for the triplet ∆. The most general SU(2)×U(1)
scalar potential involving these two fields is then given by

V = m2Φ†Φ + M2Tr(∆†∆) + µ
(

ΦTiτ2∆†Φ + h.c.
)

+ λ1(Φ†Φ)2 + λ2

[
Tr(∆†∆)

]2
+ λ3Tr

[
(∆†∆)2

]
+ λ4(Φ†Φ)Tr(∆†∆) + λ5Φ†∆∆†Φ , (2.2)

with all parameters in the potential being real, and h.c. standing for “hermitian conjugate”, as usual. So that the model is bounded
from below – and therefore possesses a stable global minimum – the quartic couplings λ1,...5 must obey the following necessary
and sufficient conditions [14]:

λ1 > 0 , λ2 + min (λ3 , λ3/2) > 0 ,

λ4 + min (0 , λ3) + 2min
[√

λ1(λ2 + λ3) ,
√

λ1(λ2 + λ3/2)
]
> 0 . (2.3)

In ref. [14] bounds on the quartic couplings of the potential so that the theory preserves unitarity were also presented.
The term cubic in the fields, with coefficient µ, can be removed by imposing on the potential, for instance, a global U(1)

symmetry of the form Φ → eiθΦ, with θ an arbitrary real number. Therefore, the µ term is a soft breaking of this global symmetry.
The theory without this term, with the global symmetry intact, is phenomenologically interesting, since it allows for dark matter
particles. On the other hand, softly breaking this continuous global symmetry is also of interest, since it can be used to help generate
neutrino masses via the seesaw mechanism. Both theories are relevant, and we will study their vacuum structure separately.

A priori there are three different vacuum possibilities: neutral, CP-breaking and charge-breaking vacua. However, spontaneous
CP breaking, in which complex neutral vevs could arise, is not possible in the Higgs-triplet model. This can be demonstrated in a
remarkably simple way (as we have done in [1]). Thus we will address real neutral and charge-breaking vacua.

2.1. The neutral vacua
The Higgs-triplet model has three different possible minima wherein the vevs are neutral and electric charge conservation holds,
each yielding very different phenomenologies. We call these Normal minima, and the three different possibilities are the following:

• The N1 stationary point, where both scalar fields have neutral vevs,

〈Φ〉N1 =
1√
2

(
0

vΦ

)
, 〈∆〉N1 =

1√
2

(
0 0

v∆ 0

)
. (2.4)

In order to have the correct electroweak symmetry breaking one would need to have v2
Φ + 2v2

∆ ' (246 GeV)2 1. This extremum
can occur whether the soft breaking µ term is present or not. Defining the quantity

M2
∆ ≡

v2
Φ µ√
2 v∆

, (2.5)

the pseudoscalar, singly charged and doubly charged scalar masses are given by

m2
A = M2

∆

(
1 + 4v2

∆/v2
Φ

)
,

m2
+ =

(
M2

∆ − λ5v2
Φ/4

) (
1 + 2v2

∆/v2
Φ

)
, m2

++ = M2
∆ − v2

∆λ3 − λ5v2
Φ/2 . (2.6)

If µ = 0 we will have M∆ = 0 and consequently mA = 0 – the triplet vev spontaneously breaks a global continuous symmetry
and the theory develops a massless axion. As for the CP-even scalars h and H, their squared masses will be the eigenvalues
of the 2× 2 matrix

[m2
h,H ] =

(
2λ1v2

φ − 2v∆
vφ

M2
∆ + (λ4 + λ5)vφv∆

− 2v∆
vφ

M2
∆ + (λ4 + λ5)vφv∆ M2

∆ + 2(λ2 + λ3)v2
∆

)
. (2.7)

1In the HTM, the tree-level prediction for the electroweak precision constraint parameter ρ is not equal to 1, unlike models with an arbitrary number of doublets.
This then forces the triplet vev to be limited in magnitude, typically no more than 8 GeV.
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• The N2 stationary point, where only the doublet has a vev,

〈Φ〉N2 =
1√
2

(
0
v

)
, 〈∆〉N2 =

1√
2

(
0 0
0 0

)
. (2.8)

In this case, to obtain the correct electroweak symmetry breaking, one must have v = 246 GeV. Unlike N1, this extremum
can only exist if µ = 0. The two neutral states emerging from the doublet (H and A) will be degenerate and are good dark
matter candidates. The scalar masses are given by

m2
h = 2λ1v2

Φ , m2
H = m2

A = M2 +
1
2
(λ4 + λ5)v2

Φ ,

m2
+ = M2 +

1
4
(2λ4 + λ5)v2

Φ , m2
++ = M2 +

1
2

λ4v2
Φ (2.9)

in which the SM-like Higgs boson is the h scalar state.

• The N3 stationary point, where only the triplet field acquires a vev,

〈Φ〉N3 =
1√
2

(
0
0

)
, 〈∆〉N3 =

1√
2

(
0 0

v∆ 0

)
. (2.10)

This extremum is clearly unphysical – quarks would be massless, for instance. Therefore, we will want to avoid this vacuum
if possible. Notice that N3 is a possible solution to the minimization conditions whether the soft breaking term µ is present
or not. Since the masses at N3 will not be required for our stability analysis, we do not present them.

The neutral minima of greater interest for the softly broken potential is clearly N1 – in that case N2 cannot occur and an N3
minimum would imply massless quarks. On the other hand, if the potential has a global continuous symmetry that is not softly
broken, then it is N2 the neutral minimum that is relevant for particle physics phenomenology – N1 would imply a massless axion,
and N3 is, once again, unphysical.

2.2. The charge breaking vacua
For charge breaking (CB) to occur one or more vevs carrying electrical charge need to appear due to spontaneous symmetry
breaking. Such vevs would generate a non-vanishing photon mass and would spoil the observed behaviour of electromagnetism.
Both the doublet and triplet fields have charged components, so there is a plethora of possible CB extrema.

Via a suitable gauge choice, it is always possible to absorb three real scalar component fields. We choose to be analogous to
the SM unitary gauge with the doublet being reduced to a neutral, real component. As such, and without loss of generality, in all
considered field vevs, the doublet vev is always real and neutral. In the following, we will only be considering configurations with
real vevs. The reader can check the full work on [1], in which we show the results obtained for CB vevs with imaginary parts. Such
imaginary vevs do not bring any new features that cannot be established by looking at real vevs alone. With this in mind, there are
six possible CB vev choices, CB1 through CB6:

〈Φ〉CB1 =
1√
2

(
0
c1

)
, 〈∆〉CB1 =

1√
2

(
−c3/

√
2 0

c2 c3/
√

2

)
(2.11)

〈Φ〉CB2 =
1√
2

(
0
c1

)
, 〈∆〉CB2 =

1√
2

(
0 c3
c2 0

)
(2.12)

〈Φ〉CB3 =
1√
2

(
0
c1

)
, 〈∆〉CB3 =

1√
2

(
c3/
√

2 c4
c2 −c3/

√
2

)
(2.13)

〈Φ〉CB4 =
1√
2

(
0
c1

)
, 〈∆〉CB4 =

1√
2

(
c2/
√

2 0
0 −c2/

√
2

)
(2.14)

〈Φ〉CB5 =
1√
2

(
0
c1

)
, 〈∆〉CB5 =

1√
2

(
c2/
√

2 c3
0 −c2/

√
2

)
(2.15)

〈Φ〉CB6 =
1√
2

(
0
c1

)
, 〈∆〉CB6 =

1√
2

(
0 c2
0 0

)
(2.16)

The CB3 case is clearly the most generic vev pattern possible. The remaining cases correspond to different possibilities, a priori
allowed by the minimisation conditions of the potential. Let us emphasise that the quantities c1, . . . c4 are not supposed to be equal
for different CB extrema. For each of the CB cases considered, the value of the correspondent vevs ci must be determined by the
minimisation of the potential, and depend on the model’s parameters. In the following two sections, we will also consider c1 6= 0
– the doublet will always have a non-vanishing vev.
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3. POTENTIAL WITHOUT SOFT-BREAKING TERM
If a global continuous symmetry is imposed on the potential, the µ term in Eq. (2.2) is zero. There are no cubic terms in the
potential, then, only quadratic, V2, and quartic, V4, ones. Thus, the potential V can be written as V = V2 + V4. Any solution of the
minimisation equations of the potential will imply a simple relation between the values of V2 and V4 at any stationary point. Since
the potential only has quadratic and quartic terms when µ = 0, and we are interested in comparing the value of the potential at
different extrema, it is tempting to attempt to use a bilinear formalism similar to the one employed for the 2HDM [20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33]. The major problem in attempting the formulation of a bilinear formalism for this model is concerned
with the λ3 and λ5 terms in the scalar potential, which cannot obviously be written as the product of two terms quadratic in the
fields. This would seem to be an unsurmountable obstacle to a bilinear formulation but, in fact, can easily be overcomed. For the
study of the vacuum structure of the scalar potential, and the comparison of the value of that potential at different extrema, we do
not need the full field-dependent potential, but rather only the potential as a function of the vevs at the several stationary points. In [1],
we explicitly present how such formulation is applied to the Higgs-triplet model, with several instructive and explicit examples.

As we have stated, without the soft breaking term, the N2 minimum is the most phenomenologically appealing. We can thus
apply our bilinear formalism to any pairs of extrema N2 versus CB, and obtain the expressions relating the depth of N2 relative
to any of the six CB configurations, written as a function of the ci vevs and the N2 scalar quadratic masses. That same formalism
can also be adapted to N1 stationary points, giving rise to analytical expressions relating the depth of the potential at N1 and CB
extrema as functions of the ci vevs and the scalar masses now evaluated at an N1 extremum. The results for both minima are joined
together in Table 1.

µ = 0 and c1 6= 0
N2 N1

VCB1 −VNi
1
4

(
c2

2m2
H,A + c2

3m2
+

) c2
3 m2

+

4
(

1 + 2v2
∆

v2
Φ

)
VCB2 −VNi

1
4

(
c2

2 m2
H,A + c2

3 m2
++

) 1
4

c2
3 m2

++

VCB3 −VNi
1
4

(
c2

2 m2
H,A + c2

3 m2
+ + c2

4 m2
++

) m2
+ c2

3

4
(

1 +
2 v2

∆
v2

Φ

) +
1
4

c2
4 m2

++ −
1
8

λ3v2
∆

c2
3c4

c2

VCB4 −VNi
1
4

c2
2 m2

+

c2
1 m2

+

4
(

2 + v2
Φ

v2
∆

) +
1
8

c2
2 m2

++

VCB5 −VNi
1
4
(
c2

2 m2
+ + c2

3 m2
++

) c2
1 m2

+

4
(

2 + v2
Φ

v2
∆

) +
1
8

c2
2 m2

++ +
c2

3 m2
+

2
(

1 + 2v2
∆

v2
Φ

)
VCB6 −VNi

1
4

c2
2 m2

++

c2
1 m2

+

2
(

2 + v2
Φ

v2
∆

) +
c2

2 m2
+

2
(

1 + 2v2
∆

v2
Φ

)
TABLE 1: Expressions relating the depth of the potential at Ni and CB, with i = 1, 2.

As we see, for all possible cases, when N2 is a minimum one always obtains VCBi −VN2 > 0. This holds even if one considers
complex charge breaking vevs [1], and thus the stability of N2 against charge breaking seems to be guaranteed – provided that
c1 6= 0.

When considering the N1 case, since all of its squared masses will be positive, all the potential differences have positive values,
except for the CB3 extrema. In this case, the simultaneous occurrence of both N1 and CB3 extrema is only possible if λ3 = λ5 = 0,
which implies m2

+ = m2
++ = 0. This leads to the degeneracy of both extrema, VCB3 − VN1 = 0. This of course means that such

coexistence of extrema implies that for such parameter choices CB3 ceases to be charge-breaking2.
The upshot is that for generic scalar potential parameters where neither λ3 nor λ5 are zero, there will be no CB3 extrema

coexisting with N1. Thus N1 minima are stable against the possibility of deeper charge breaking minima occurring. This conclusion,
like for the N2 case, also holds if one considers complex CB vevs. We have again assumed that in the CB vacua the doublet has a
non-vanishing vev, c1 6= 0. Relaxing this assumption will significantly change these conclusions.

2In fact, without the λ3 and λ5 terms in the potential, it becomes possible to perform two independent SU(2) transformations on the doublet and triplet, and thus
“rotate away” the charge breaking vevs of the triplet, transforming a seeming CB3 vacuum into an N1 one.
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4. POTENTIAL WITH SOFT-BREAKING TERM
The introduction of the soft breaking term µ changes many things. Phenomenologically, the N2 vacuum ceases to be possible – the
minimisation conditions have no solution with v∆ = 0 when vφ 6= 0. The N1 vacuum no longer implies a massless scalar, rather that
state has a mass directly proportional to µ. Regarding the stability of neutral vacua, the soft breaking term has a significant impact .
Let us begin by recalling that the µ term in the potential is cubic in the fields. The potential is therefore no longer a sum of quadratic
and quartic terms as previously, but it has a new cubic contribution. Now, such cubic terms in the vevs mean that the application
of the bilinear formalism is not at all obvious or straightforward, since it relies on quadratic-plus-quartic potentials being easily
expressed as polynomials of quadratic field/vev variables. Nevertheless, with some ingenuity, we can follow the steps outlined for
the non soft breaking cases and adapt the demonstrations to include the cubic terms when necessary. In [1], we explicitly perform
one of the calculations relating the value of the potential at two pairs of extrema, obtaining the first case relating N1 with CB1:

VCB1 −VN1 =
m2

A

4

(
1 +

4 v2
∆

v2
Φ

) (c2 − v∆)
2

(
1 − v∆

c2

c2
1

v2
Φ

)
+

m2
+ c2

3

4

(
1 +

2 v2
∆

v2
Φ

) . (4.1)

As before, the difference in the values of the potentials at a CB stationary point and a N1 one can be expressed as a function of
vevs and the squared masses at N1. Taking the limit µ→ 0 in this expression (equivalent to put mA = 0) one recovers the non-soft
breaking expression we can find in Table 1. Unlike the µ = 0 case, however, now even if N1 is a minimum, rendering both m2

A and
m2
+ positive, it is no longer guaranteed that VCB1 − VN1 > 0. The reason is the coefficient −v∆/c2, which opens up the possibility

of having VCB1 −VN1 < 0 even if N1 is a minimum.
Thus, regarding CB1, the soft breaking coefficient µ completely changes the stability properties of the N1 minimum. It is

possible to find the remaining expressions for N1 coexisting with other CB extrema:

VCB2 −VN1 =
m2

A

4

(
1 +

4 v2
∆

v2
Φ

) (c2 − v∆)
2

(
1 − v∆

c2

c2
1

v2
Φ

)
+

1
4

c2
3 m2

++

VCB3 −VN1 =
m2

A

4

(
1 +

4 v2
∆

v2
Φ

) (c2 − v∆)
2

(
1 − v∆

c2

c2
1

v2
Φ

)
+

m2
+ c2

3

4

(
1 +

2 v2
∆

v2
Φ

) +
1
4

c2
4 m2

++ −
1
8

λ3v2
∆

c2
3c4

c2

VCB4 −VN1 =
m2

A

4

(
1 +

4 v2
∆

v2
Φ

) (
c2

2
2
+ v2

∆ + c2
1

v2
∆

v2
Φ

)
+

1
8

c2
2m2

++ +
v2

∆
v2

Φ

c2
1 m2

+

4

(
1 +

2 v2
∆

v2
Φ

)

VCB5 −VN1 =
m2

A

4

(
1 +

4 v2
∆

v2
Φ

) (
c2

2
2
+ v2

∆ + c2
1

v2
∆

v2
Φ
− c2

3

)
+

1
8

c2
2m2

++ +
m2
+

4

(
1 +

2 v2
∆

v2
Φ

) (c2
1

v2
∆

v2
Φ
+ 2 c2

3

)

VCB6 −VN1 =
m2

A

4

(
1 +

4 v2
∆

v2
Φ

) (
v2

∆ − c2
2

)
+

m2
+

2

(
1 +

2 v2
∆

v2
Φ

) (c2
1

v2
∆

v2
Φ
+ c2

2

)
. (4.2)

Only the CB4 case is guaranteed to give VCB4 −VN1 > 0 when N1 is a minimum. In all other five cases, there is always at least one
term somewhere in the expressions that can render the potential differences negative even when N1 is a minimum. The inclusion
of complex vevs only reinforces this conclusion [1]. Thus, we conclude that “turning on” the soft breaking term in the potential
weakens the stability of neutral minima – even if N1 is a minimum, there may be regions of parameter space for which deeper
charge breaking vacua with c1 6= 0 may occur.

We summarise our results in Table 2, for both versions of the model, considering our underlying assumption c1 6= 0.

CB minima c1 6= 0
µ = 0 µ 6= 0

N2 minima STABILITY GUARANTEED DOES NOT OCCUR
N1 minima STABILITY GUARANTEED STABILITY NOT GUARANTEED

TABLE 2: Stability results of N2 and N1 minima against CB minima, with c1 6= 0.
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5. THE CASE OF THE VEVLESS DOUBLET
Up until this point we have been considering only CB vev configurations with c1 6= 0. Consider, however, the first derivative of the
potential with respect to c1 [1], which is given by

∂V
∂c1

= c1

[
m2 + λ1 c2

1 +
λ4
2
(c2

2 + c2
3 + c2

4) +
λ5
2

(2c2
2 + c2

3)

]
= 0 . (5.1)

From here we see that the trivial solution c1 = 0 is always possible, regardless of the values of the parameters. This is a disconnected
solution from c1 6= 0 and the conclusions we drew for CB vacua with c1 6= 0 cannot be extended to the vevless doublet case by
simply considering c1 → 0. Thus there is the possibility that the c1 = 0 case brings qualitatively different conclusions, and indeed
that is the case.

With c1 = 0, there are six new possible real CB vev configurations, CB7 trough CB12, for which the minimisation equations
give non-trivial solutions:

〈Φ〉CB7 =
1√
2

(
0
0

)
, 〈∆〉CB7 =

1√
2

(
c3/
√

2 c2
c2 −c3/

√
2

)
(5.2)

〈Φ〉CB8 =
1√
2

(
0
0

)
, 〈∆〉CB8 =

1√
2

(
0 c2
c2 0

)
(5.3)

〈Φ〉CB9 =
1√
2

(
0
0

)
, 〈∆〉CB9 =

1√
2

(
0 −c2
c2 0

)
(5.4)

〈Φ〉CB10 =
1√
2

(
0
0

)
, 〈∆〉CB10 =

1√
2

(
c3/
√

2 −c2
3/2c2

c2 −c3/
√

2

)
(5.5)

〈Φ〉CB11 =
1√
2

(
0
0

)
, 〈∆〉CB11 =

1√
2

(
0 c4
0 0

)
(5.6)

〈Φ〉CB12 =
1√
2

(
0
0

)
, 〈∆〉CB12 =

1√
2

(
c3/
√

2 0
0 −c3/

√
2

)
(5.7)

We can now apply the same methodology of previous sections to the comparison of the value of the potential at each of the above
CB vacua and the normal ones.

5.1. Stability of minima of type N1 and N2 against charge breaking without soft-breaking
With µ = 0 the potential has an intact global symmetry. We have concluded that, without such soft breaking term, there was no
possibility of deeper CB vacua with c1 6= 0 than neutral ones. Now, however, this is not the case:

VCB7 −VN1 =
v2

Φ
v2

∆

m2
h m2

H
16(λ2 + λ3)

− λ3
[2(λ2 + λ3)v2

∆ + (λ4 + λ5)v2
Φ]

2

16(λ2 + λ3)(2λ2 + λ3)

VCB10 −VN1 =
v2

Φ
v2

∆

m2
h m2

H
16(λ2 + λ3)

. (5.8)

The expression for VCB7 − VN1 holds for CB8, CB9 and CB12, while the second one holds for VCB11 − VN1. From Eq. (5.8) we
conclude that an N1 minimum is stable against deeper vacua CB10 (and CB11)3 but, even if N1 is a minimum, there is no guarantee
that VCB7 − VN1 > 0. This completely changes the stability properties of this version of the HTM – neutral minima in a version
with a global symmetry were only seemingly CB-stable since in fact deeper CB vacua with vevless doublet are possible.

For N2 minima, we have:

VCB7 −VN2 =
1
4

m4

λ1
− M4

λ2 +
1
2

λ3


VCB10 −VN2 =

1
4

(
m4

λ1
− M4

λ2 + λ3

)
(5.9)

These expressions confirm that minima of type N2 are not guaranteed to be stable against charge breaking since deeper CB vacua
with c1 = 0 may well exist.

3Due to the boundedness-from-below conditions, the quantity λ2 + λ3 in Eq. (5.8) is ensured to be positive.
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5.2. Stability of minima of type N1 against charge breaking with soft-breaking
Finally, considering now the case of the potential with a soft breaking term µ, CB vacua with a vevless doublet can also occur, and
its relationship with the vacuum N1 are such that:

VCB7 −VN1 =
v2

Φ
v2

∆

m2
h m2

H
16(λ2 + λ3)

− λ1
8(λ2 + λ3)

m2
A

1 +
4v2

∆
v2

Φ

v4
Φ

v2
∆
− λ3

[2(λ2 + λ3)v2
∆ + (λ4 + λ5)v2

Φ]
2

16(λ2 + λ3)(2λ2 + λ3)

+
λ3

2(2λ2 + λ3)

m2
A

1 +
4v2

∆
v2

Φ

v2
∆ +

λ4 + λ5
2(λ2 + λ3)

v2
Φ −

1
2(λ2 + λ3)

m2
A

1 +
4v2

∆
v2

Φ


VCB10 −VN1 =

v2
Φ

v2
∆

m2
h m2

H
16(λ2 + λ3)

− λ1
8(λ2 + λ3)

m2
A

1 +
4v2

∆
v2

Φ

v4
Φ

v2
∆

. (5.10)

The expression for VCB7 − VN1 holds for the cases CB8, CB9 and CB12 while the second one also holds for VCB11 −VN1. We again
conclude that the fact that N1 is a minimum does not guarantee its stability against deeper charge breaking vacua. Since we had
already identified, in such softly-broken model, CB vacuum configurations for which deeper CB minima could coexist with neutral
ones, the vevless doublet case does not bring any qualitatively different conclusions.

In Table 3, the results for the vevless doublet case are summarised, with stability not being guaranteed in any situation.

CB minima c1 = 0
µ = 0 µ 6= 0

N2 minima STABILITY NOT GUARANTEED DOES NOT OCCUR
N1 minima STABILITY NOT GUARANTEED STABILITY NOT GUARANTEED

TABLE 3: Stability results of N2 and N1 minima against CB minima, with c1 = 0.

6. NUMERICAL ANALYSIS
To establish the relevance of our analytical results, we will now undertake a numerical analysis of the parameter space of the Higgs
Triplet Model, searching for CB minima deeper than neutral ones. We do not intent to perform an exhaustive scan of the model’s
parameter space. The aim here is to verify whether restrictions on the model’s parameters can be obtained by requiring the global
minimum of the model to be neutral, thus increasing its predictive power.

We begin our numerical analysis with the global symmetry intact, without the soft breaking term µ. This model’s version has a
vaccum of type N24, given by Eq. (2.8), which includes possible dark matter candidates – the CP-even scalar H or the pseudoscalar
A, degenerate in mass. We generated a large sample of combinations of parameters satisfying the following conditions:

• The SM-like Higgs boson, h, has a mass of 125 GeV; the remaining scalar masses were chosen randomly in the intervals

50 ≤ mH = mA ≤ 1000 GeV , max{mH , 400} ≤ m+ , m++ ≤ 1000 GeV . (6.1)

• The quartic couplings λ2 and λ3 are chosen randomly and independently in the interval [−10 , 10].

• The quadratic parameter M2 is chosen randomly in the interval [−106 , 105] GeV2.

Eqs. (2.9) relate the masses and the couplings at this N2 minimum, and allow us to fully specify all parameters of the potential.
We also required that the quartic couplings obeyed the bounded from below and unitarity conditions described in section 2. The
h scalar behaves, in all of its production and decay channels, very much like the SM Higgs boson, as current LHC results indicate
is the case 5. Once the parameter space was generated we searched for charge breaking minima. We identified the most likely CB
vacua – in this case, the vev combinations we dubbed CB7 and CB10, as defined in Eqs. (5.2) and (5.5). We scanned the model’s
parameter space, looking for N2 minima and, when found any, we look if there were deeper CB ones. Check [1] for the detailed
procedure employed here. Our results are depicted in Fig. 1. In the plot we present the distribution of the parameter points in the

4We have checked that, if N2 is a minimum, then N2 is always deeper than any N1 minimum, in the version with the global symmetry intact.
5Notice that, due to the intact global symmetry, the h scalar has tree-level couplings to fermions and gauge bosons identical to those of the SM. We can therefore be

confident that the chosen parameter space yields a 125 GeV scalar with properties in numerical agreement with LHC results.
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FIGURE 1: Values of the dark matter particle mass as a function of the quadratic coupling M2 for a minimum of type N2. In blue,
all the scanned points; in red, those points for which there exists a CB vacuum (of types CB7 or CB10) lower than N2.

M2-mH plane (recall that for this minimum H and A have degenerate masses and are dark matter candidates). The blue points are
the totality of the scan. The red points are a subset of the blue ones and indicate the regions of parameter space for which there is
a CB vacuum (of types CB7 or CB10) lower than the N2 minimum. Some interesting features emerge from this plot. We see, for
instance, that the existence of a CB extremum requires a negative M2. We also observe that M2 > 0 is a sufficient condition for N2
stability, but not a necessary one.

In all, roughly 27% of the scanned parameter space includes global CB vacua. Although one would need to compute the
tunneling time between N2 and the global minima, the simple fact that we found that such a large percentage of parameter points
have a deeper CB vacuum is significant. Analysing directly the expressions relating the relative depth of the potential at N2 and
CB7 or CB10, in Eqs. (5.9), we can easily deduce a necessary and sufficient condition for the non-existence of deeper CB vacua.
Firstly, one has to guarantee VCBi − VN2 > 0. This condition together with the requirement that for all positive values of M2,
neutral vacua stability is guaranteed, and that N2 is a minimum, which yields m2 = −λ1v2 = −m2

h/2, we obtain:

An N2 minimum is stable against charge breaking iff M2 > −

√
min

(
λ2 +

1
2

λ3 , λ2 + λ3

)
mh v√

2
. (6.2)

Considering now a softly broken model with a minimum of type N1, the analysis of the previous sections shows there are
several types of possible deeper CB vacua. We scanned over the model’s parameter space, allowing the triplet vev to be at most∼ 8
GeV, in order to comply with electroweak precision constraints [14, 15, 16, 17, 18]. We allowed the quartic parameters {λ2 , λ3 , λ4}
to vary between -10 and 10 and used the expressions for the eigenvalues of the CP-even mass matrix to, through the input of the
values of mh and mH , determine the quartic coupling λ5 and the soft breaking parameter µ. With all the potential’s parameters thus
established we demanded that they obeyed unitarity and boundedness from below conditions; and also that the phenomenology
of the 125 GeV scalar, h, be SM-like as per current LHC results. Once again, our purpose is not to perform a complete parameter
space scan but rather show that CB bounds are relevant to phenomenologically appealing regions of parameter space of the model.

Having determined the full set of parameters caracterising an N1 minimum we then proceed to verify whether there is a deeper
CB vacuum, by performing a numerical minimisation of the potential whilst allowing the CB vevs to be non-zero. Our results are
shown in Fig. 2, in which we plot the doubly charged scalar mass m++ as a function of M2. As before, in blue we represent all the
scanned points, and in red the subset – a little over 48% – of those points for which there is a CB vacuum below the N1 minimum. As
in the non-soft breaking N2 case we see that deeper CB vacua occur exclusively for M2 < 0. Despite that similarity, the existence of
the µ parameter changes considerably the stability picture of the neutral minima – not only there is a greater percentage of unstable
N1 minima for the potential which includes µ, but also the regions for which N1 stability is guaranteed are now quite different from
the N2 case. Such a large percentage of potentially-unstable neutral minima shows that one needs to be careful when considering
parameter scans of the Higgs Triplet Model, with some values of the parameters chosen actually predicting a global CB minimum.

7. CONCLUSIONS
We have performed a deep analysis of the stability of neutral minima in the Higgs Triplet Model against the possibility of deeper
charge breaking minima developing. We obtained analytical expressions relating the difference in the depths of the potential at
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FIGURE 2: Values of the doubly charged scalar mass a function of the quadratic coupling M2 for a minimum of type N1 in an HTM
with softly broken global symmetry. In blue, all the scanned points; in red, those points for which there exists a CB vacuum (of
types CB7 or CB10) lower than N1.

neutral and CB extrema. Our analysis was separated in two versions of the model – the one possessing a global symmetry and the
one where that same symmetry is softly broken by a cubic term. We also performed a separate study of the CB vev configurations
with or without a vev for the doublet. The analytical calculations helped us establish that, in some cases, only the vevless doublet
vacua could yield CB global minima. They also established that the inclusion of the soft breaking term induces more possibilities of
CB vacua developing. To verify the relevance of CB bounds one might obtain we performed a numerical scan over the parameter
space of the model. We found that for roughly 26% (48%) of the parameter space found for the globally symmetric (softly broken)
potential neutral minima had deeper charge breaking ones. For the dark matter minimum, there was a clear demarcation for the
regions where CB could occur, for which we have deduced a necessary and sufficient condition for full stability, but not so for the
softly broken model. We conclude that CB global minima can indeed coexist, in some cases fairly frequently, with neutral minima
and the potential for instability is therefore quite present.
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